Skip to main content


Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiation, convection, and by heat pump systems through a process called the refrigeration cycle. Refrigeration conduction media such as water, air, ice, and chemicals are referred to as refrigerants.

An air conditioning system, or a standalone air conditioner, provides cooling, ventilation, and humidity control for all or part of a house or building.

The refrigeration cycle uses four essential elements to create a cooling effect. The system refrigerant starts its cycle in a gaseous state. The compressor pumps the refrigerant gas up to a high pressure and temperature. From there it enters a heat exchanger (sometimes called a "condensing coil" or condenser) where it loses energy (heat) to the outside. In the process the refrigerant condenses into a liquid. The liquid refrigerant is returned indoors to another heat exchanger ("evaporating coil" or evaporator). A metering device allows the liquid to flow in at a low pressure at the proper rate. As the liquid refrigerant evaporates it absorbs energy (heat) from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is absorbed inside the building and transferred outdoors, resulting in the building cooling off.
In variable climates, the system may include a reversing valve that automatically switches from heating in winter to cooling in summer. By reversing the flow of refrigerant, the heat pump refrigeration cycle is changed from cooling to heating or vice versa. This allows a residence or facility to be heated and cooled by a single piece of equipment, by the same means, and with the same hardware.

Central, 'all-air' air conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in modern residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required to carry the needed air to heat or cool an area. The duct system must be carefully maintained to prevent the growth of pathogenic bacteria such as legionella in the ducts.